Programming and Classification

List 2

Marek Klonowski

(To solve some problems from this list you will need some knowledge presented during lecture # 2 and # 3 as well as some background in probability theory.)

IV. More about probability and combinatorics

- 1. What is the number of words of length *k* over the alphabet $\{a, b, c, d\}$?
- 2. What is the number of words of length k over the alphabet $\{a, b, c, d\}$ without letter a?
- 3. What is the number of words of length k > 3 over alphabet $\{a, b, c, d\}$ without letter b starting with '*aaa*'?
- 4. We toss a symmetric coin till we get a tail for the first time. Let X be the random variable denoting the number of trials before getting the first tail.
- 5. What is the number of dictionaries (mappings) form a set *A* into set *B*?
 - (a) Compute $\Pr[X > 5]$.
 - (b) Compute $\Pr[X \text{ is even}]$.
 - (c) Compute E(X).
 - (d) Let t_1, t_2 be natural numbers. Prove that

$$\Pr[X > t_1 + t_2 | X > t_1] = \Pr[X \ge t_2].$$

V. Simple text processing methods

Let us consider a corpus of N = 3 texts:

expensive.

 $text_1$ =We keep our marriage classy by texting each other instead of shouting through walls while we are home. $text_2$ =Marriage teaches you a lot about yourself. For instance, I have learned that I do not need to use so many paper towels, and they are

 $text_3$ =The best way to remember your wife birthday is to forget it once .

- 1. Compute $TF_{classv,1}$, $TF_{it,2}$, IDF_{are} .
- 2. Compute *TF.IDF*(are, 1) , *TF.IDF*(are, 2) , *TF.IDF*(do, 3).
- 3. When TF.IDF(are, 1) = 0? Consider all cases. Try to provide some interpretation.